CTEIB3
AMX goes Instabus(]

Manual for the Comm-Tec EIB-Gateway AXG-EIB and
the CTEIB3 control software

Revision 3.01
Date: 30. October 2001

©2000 COMM-TEC
Siemensstr. 14, 73066 Uhingen
Phone: +49/7161/3000-0

Fax: +49/7161/3000-400

Table of contents

TABLE OF CONTENT So iiiiiiiiiiieirrrrresssssssrrrrrerssnsssss e e s s nsssssa e e e e anssssssreeessnnsssssssereesnnssnnnnnnnnees 2
o 3 o X 0 O 3
VWV HAT IS IT FOR T e e ettt et e 3
ROLE OF THE EIB INSTALLER ...t et e e 3
EIB FROM THE AMX PROGRAMMER’S POINT OF VIEW et e e e 3
EIB DETAILS WHEN USING THE GATEWAY ...t eee ettt e et e e e e e e e e e e e e e e 4
SYSTEM DESCRIPTIONcccoiiiiiiiiiiiiiieeseeseseesesseeseseessesesseseeeeememesememememeeememememerememerem. 6
HARDWARE COMPONENTS ... iiiiiittttieeeeeeteeetataeseeeseeeaata e eeeeeeae e eeseeseestanaseeesesesatannseeeeeresstannseseessensrnnn 6
SOFTWARE COMPONENTSettttttiteeieeteeetaeeeeeeseeetas e seeeseeesaaaeeeaeeees s seeeseeetara e seeeseessetanseeesereesrnnanns 7
GROUPS, ADDRESSES AND FORMATScottuuutieeieietetieteeesesesataaaeeseesestuansseseeeesataeeeseeeaetaseeeserersranaens 9

LI (T = T 10
GATEWAY INSTALLATION ... ettt teetttie e e e et eeetete s e e eaesese b e eeeee s e e eaaa s eeeeeesestaaa e seeeseeesasannseeesersestannseeeeesensnnnn 11
INSTALLATION OF THE RS232 BOX/CARDttt 11
CONNECTION GATEWAY "BOX. ...ttt eee e e et e e et e e e e et e e e e e e e e et e e e e e e e e e et e e e e e e e e eeaann 12
CONNECTION BOX-MASTER ... ettt et e e e e e e e e et e e e e e e e et e e e e e e e e e e e e e e e eneans 12
TRANSFERRING THE BOX PROGRAM. ...ttt et e e e e e e e e 12
ENTERING GROUP ADDRESSES IN THE BOX ...vuuneeeeeee e e e et e e e e e e e et e meaeeeeeaees 13
SUPPLYING THE BOX FROM MAIN PROGRAMot e e e 13
COMMUNICATING WITH THE BOXciiiieiiiiiiiieieisieessssssesssssssssesssssesssessssssssssseesseeseemesemeessssmsessssmssssnne 14
SYSTEM _CALLS .teiiieeeieiiitttee et e e e e e ettt et e e e e e e et b e aeeeaeeaeasastaeeeeaeeesasassteseeaaeeesaansntaneeaaesesaasssaeseaeaeeeannnees 14
SOIUNG VAIUGS ...ttt ettt ettt ettt e 15

[alo1=T0 o Y- Lo} L SUu 15
ACHIVE reQUESES (POIIING)......cooieeeeeeeee ettt 15
(70T 00T T=Ta Lo S (o 1 L= 010) S 16
Dz 2 oo 0NV 4] o] N 16
TERMINAL MODE.o et oottt e e et e e e et e e e e e et e e e e e e e e e e e e e e e 17
CHANNELS AND LEVELS ... ettt e ettt e e e et e e e 17
COMMAND SET OF THE BOXciiiiiiteeuiiiiiiimssessssrreresensssssssrsressnsnsssssseressnsssssseemesssssssseseesnssssssnnns 18
ADD — ENTER A GROUP ADDRESS ... ettt e e et e e e e e e et e e e e e e e e aaees 18
ADR — SELECT OUTPUT ADDRESS FORMATTINGiiiiiettitieieeeieietetieeeeeeeseesianeeeesssessannnnsesesersssnnnnseeeaees 18
BOXCH — LINK BETWEEN LOGIC CHANNELS OF 232++ AND 1-BIT ACTUATORS.......ccvuvtiiieeieeeieiiiieeseeeneens 18
BURST — LIMIT FEEDBACK SENDING SPEEDuuuuiiiiiiiitetiieeeeeteestiseeseessessassnnseessessssanneseesseressnnnseeeaees 19
DEL — DELETE A GROUP ADDRESS ...uuuuiiiiiittttteieteeesetetetsseeesesasstasasssesseesasneseseesastanaeseeesersraraeseesaees 19
DELTA — DIFFERENTIAL TRANSMISSION ON/OFF......ciiiiuutueieeeeeeeeetee e e e e e ettt e e e e e e s aetaeeseeeseeeaebaaeeeaees 19
LIST — DISPLAY EXISTING DEFINITIONSciitutuuueteieiiietetieteeeeesesstasaessessessassseesessestanneseeeseessenaeseeesees 19
NOPOLL — DELETE A POLL TRIGGER.. ...« ceeeetee ettt e e e et e e e e e e eaees 20
POLL = ACTIVE VALUE REQUEST ...t e ettt e e e e e e e et eeaees 20
RESEND — SEND ALL VALUES AGAIN ...ttt e e 20
RESET — PERFORM A GATEWAY RESETttt e et e e e et e e e e e e e e et e e e e e e e e e e e e eaees 20
SET — WRITE TO GROUP ADDRESSt e et e e et e e e e et e e e e e e e et e e e e e e e e 20
START — START THE UPDATE PROCESSuuuuiiiiiiietttieeeeeeeteaetseeseeseetaaseseesssesaatanneeesseeestannaeseesseeesans 20
STATUS — SHOW STATUS INFORMATIONuuuuiieeiiieteteeseeeseteaetiseeeeeseessasaeessssessssannesesessestanneseesseeesens 21
STOP — STOP THE UPDATE PROCESScuutuuuiiiieetiettutaeteeeseteaatiseeseeteettasaseesseessataaneeesereeetaaeseeeserenans 21
UPLOAD — LOAD GATEWAY FILTER TABLE ...eutuuuetiieieeittteseeeeeeeeeteeseesseseaaaseessesastanneseeesesesennnnseeeaees 21
WATCH — OBSERVE A GROUP ADDRESSciiiitttttieieeeteeeteiaeeeeeaeeesataaeeesessesaaaaeseeesseeastanseeeeesersrannnss 21
WHEN .. POLL — DEFINING A POLL TRIGGERcctuuueiiiiiiietitie e ee e ettt e e e e e e seeeaaeseeeseeeasaaaseeeaeseeebannanss 22
2N o 1 11 0) 23
COMPARISON ,,OLD" CALLS — NEW CALLS ... ettt 23
VALUES FOR DIMA ACTUATORS ...t e ettt e e e e et e e e e e e e aaees 24
EXAMPLE: ENTERING THE GROUPS. ... i et e e e e e e e e e e e e e e e e e e eaaees 25
EXAMPLE: IMAIN PROGRAMttt et e et e e e e e et e e e e e e e e e eeeeeaees 25
LOCAL CALLS TO REPLACE ,,OLD"” INITIALIZATIONot e e 28
[R 29
ERROR MESSAGESciittttiietieeteettete et e e e et eeaat e e e e ee e e ettt eeeeeeeeae s s eeeaes e e e baaa s eeeseesae b seeeeesesabnnnaeeeeeees 30

Preface

What is it for?

The CTEIB3 software package is used to connect AMX control systems to the "European Installation
Bus" EIB ("Instabus"). It provides an easy to use interface for developers to comfortably access the
bus.

Role of the EIB installer

It can not be expressed strongly enough: when connecting to an EIB system, solid knowledge of the
EIB and close contact to experienced EIB installers is strongly recommended. A faulty set Reading
flag in an actuator, or a restrictively programmed line coupler can be really hard to find without good
analysis tools.

In no way can CTEIB3 configure an EIB system. The package is used to connect to a working EIB,
and can access only those bus elements whose usage is permitted. Because of that, it should be
planned together with the EIB installers if all desired functions are allowed to the bus components.

EIB from the AMX programmer’s point of view

Analog to AMX systems is the European Installation Bus — as the name implies — a bus system: all
components are in principle connected to the same wire and share the available bandwidth.

The bus itself is a 2-wire cable, used to supply 24VDC to the devices, as well as transferring data
between them.

Unlike AMX, the EIB system is a decentralized structure — there is no special master controlling the
communication, but any device can send data to any other device.

A sophisticated protocol ensures that only one device is sending at any time, and collisions are
avoided as much as possible.

All communication happens in the form of telegrams. A telegram is a data packet, that consists of the
following parts:

e Sender address — Hardware address of the sending device

« Receiver address — Group address of the receiving devices

+ Payload

Telegrams can be sent to several target devices, i.e. to switch off all lamps in a room simultaneously.
So there is a fundamental difference between sender and receiver addresses:

A source address is a hardware address, describing the device that is sending the telegram.

A destination address is a group address, describing the function to be influenced.

Every device on the EIB has exactly one hardware address, but can react to several group addresses.
Also, it is possible, that several devices react to the same group address.

Both kinds of addresses are defined by the EIB installer.
Hardware addresses describe the kind and amount of used devices and are allocated during planning
and installation. The gateway is not interested in hardware addresses at all.

The much more important addresses for AMX are the group addresses.
They define the functions an EIB installation can perform. So functions are simply used by sending
specified values to group addresses.

EIB details when using the Gateway

EIE backbone

line coupler, (hne coupler| |line coupler line coupler

Actuator = |Actuator — |Actuator — ‘A}(G-EIB
| | EIE line

‘ AMX

Actuator — Sensor — SENS0r

Sensor = Sensor = |AXG-E|B =

EIE ling EIB line —I—

AMX

EIB line

In principle, the EIB gateway AXG-EIB is a normal EIB device, and can therefore be connected at any
location to the El bus. Unlike simple actuators or sensors it can be responsible for a large amount (up
to 1530) of group addresses — a normal dimmer for example, just reacts to four addresses.

So one must be very careful to ensure that the gateway has a real chance to react to all bus telegrams
of interest. Especially when using line couplers, solid planning is absolutely necessary. The following
points should be seriously considered:

On the one hand all telegrams should reach the gateway. If line couplers are inserted between
gateway and controlled components, their filter tables are to be programmed in such a way that all
relevant telegrams are really passed through.

On the other hand the El bus couplers are sluggish — upon receipt of a telegram, an EIB device needs
some time until the next telegram can be accepted. Especially scene controllers can generate a flood
of telegrams, which are sent to all actuators participating in the scene. Because these are usually
different devices, the ,dead time® of the bus couplers does not count much — each coupler has enough
time to recreate before the next telegram gets received.

Not in the case of the gateway: usually every group address of a scene is of interest — the gateway
should have the possibility to read in all the scene telegrams.

Problem: the first telegram acknowledgement is enough, but this does not necessarily come from the

gateway! In fact, it can happen that an actuator which is participating in the scene acknowledges a

telegram, but the gateway does not notify it, because it is still busy processing the previous telegram.

If this should ever happen, there are two possible tactics:

1. The scene controller's parameters are changed, that it does not use the full bus bandwidth
(approx. 50 telegrams/second), but just sends around 10 telegrams/second.

2. The gateway gets its own line, by isolating it from the ,.targets* by its own line coupler. Then the line
coupler can assert that all telegrams fo the gateway are acknowledged by the gateway (as long, as the line
couplers bus coupler is fast enough...).

Foreword to Audit 3.01

The adaption of the software for the AXB-232++ (AXC-232++) has been a consequence of an
elementary technical revision of the Gateways.

The main criterions for the new software have been

- asmoothly switch to the new product, under consideration of the knowledge already gained
dealing with earlier revisions

- the possibility to equip already existing installations with the new Gateway

- the compatibility in combination with the NetLinx-Generation

Your AMX-Connections to an EIB-System can still be realized as it used to be. The internal software
of the 232++ is automatically recognizing the linked-up Gateway — you don’t have to take care of
altered memory-administrations or something like that.

Only innovation: the data fields with the current Switch-, Dim4-, 1Byte-, 2Byte-, 3Byte-, 4Byte-rates
must be declared as Integer-Arrays (also see the example on Page 28).

The functions of the SYSTEM_CALLs enclosed have not been changed. In case of an operation with
a Gateway of the latest generation, certainly the latest revision has to be used.

Further, it is not possible to change an operating Gateway without backing up the Master (the 232++,
of course) first.

The Software-Version 3.01 including the SYSTEM_CALLs is working together with all Gateways.

Uhingen, October 2001

System description

Hardware components

, Projection
Lamp Blinds cerean
. Switch Switch
Dimmer actuator actuator Buttons
I | | |
] EIB
| AXG-EIB \
RS232

‘ AXB-NET ‘ AXB-232++ | |TouchPanel
[|
Axlink

AMX Master

To connect an AMX system to EIB, several hardware components are necessary:

*« An AMX-Master, processing the main program, which generates control commands and receives
feedback from the EIB (called ,Master® in the following)

* An EIB-Gateway AXG-EIB to physically connect to the EIB, containing the bus coupler and a
configurable packet filter (,Gateway")

¢ A smart RS232 interface AXB-232++ (bus device) or AXC-232++ (slot card) to manage EIB
messages and commands (,Box").

The complete configuration data resides in the box, not necessarily in the main program. Though it is
possible to transfer all addresses to the box upon every system restart (via system_call), there is no
need to do so. It is sufficient if the main program knows the meaning of the ,channels® (type/number).

When addresses and/or types are changed, the box automatically updates the packet filter data in the
gateway AXG-EIB. This ensures that all used messages are passed through (as long as they are
generated on EIB side...), and that no ,data junk® from unused groups loads the system.

On every connection to the gateway, a checksum (generated by the gateway internally) gets checked
against a stored version in the box. If there is deviation the gateway will be reconfigured.

On the AMX side, the handling is similar to that for Touch Panels: every action is handled by channel
numbers, level numbers and text numbers; the appearance on the display plays no role for the
program.

Also similar to Touch Panels: all application data is stored in memory which, even though it is backed
up by a battery, is nevertheless volatile. It is recommended to keep a machine-readable version of the
configuration after every change to quickly reestablish functions after an emergency case.

Software components

Button
Control
E;;;:g;gig: *{System_ﬂallsH telegrams » A::tualnrs.
Trigger

Faadbacks Receive Message -
variables telegrams
Sensors

Touch- AMX Gateway/
Panel Master AXB-232++ EIE

The CTEIB3 software package consists of a control program for the RS232 box AXB-232++ and
several program libraries (system_calls), that can be included in your own (main) programs.

The control program gets loaded into the box (or slot card), and the box® interface is connected with
the gateway AXG-EIB. The program is already compiled, and has only to be transferred for
installation. All parameters are set by the AMX master.

On the AMX side, the gateway behaves - due to the usage of an RS232 box - like a ,normal“ bus
device; one can communicate with it, using ,normal“ send_command/send_string statements.
Because of the telegram structure of the EIB and the variety of possible messages and commands,
the demands/requirements for the send and receive logic including packet processing are relatively
high. So for performance reasons (response time), the included system_calls should be used.

They define a set of functions that can be easily — by system_call statements — included in your own
programs. Due to their modular structure, only the really necessary program parts are included to save
master’s resources (memory, processing time, bus load).

Data model

EIB defines several data types (normed by EIS), to fulfill different tasks. Apart from simple On/Off
switching types, there are special data types for unsigned numbers in different widths, signed
numbers, floating point values, percentages, date and time, wind directions and many more.

No one needs all of them in the AMX world, and CTEIB3 uses a simplified data model to cover the
most common issues, but is also absolutely transparent to allow random access.

All'in all are six different data types available:
- Switch Binary switch, On/Off
Dim4 4-Bit dimming actuator, often used control type for dimmers
1Byte All EIB data types with one Byte (8 Bit) length
2Byte 2-Byte-EIB-types (16 Bit)
3Byte 3-Byte-EIB-types (24 Bit)
4Byte 4-Byte-EIB-types (32 Bit)

The first two of them are defined EIS types, which should cover at least 50% of the most installations.
All other EIB types are mapped to the types 1Byte..4Byte — depending on their length. An element of
the type 1Byte can therefore be an 8Bit integer number (-128..127), but also can be a percentage
(0..100%).

All values are passed 1:1; if you ever want to get an 32Bit IEEE float value (EIS9) from the bus — feel
free. But what the content of the four delivered ,raw” bytes means, is a problem of your application
software. CTEIB3 is a pure transport vehicle, no interpretation of data happens.

The only data type that can be used in the AMX without a ,pre wash® is an unsigned 8Bit integer in the
range 0..255 — a 1Byte type. Handy — because this is the type the most dimmers use for setting and
reporting absolute values.

To use any other EIB data type you have to build some methods to convert this type into strings of
according length — if possible in both directions and with checking for useful values...

Groups, addresses and formats

Every component of an EIB system, that shall be accessible by AMX, is on the EIB side defined by an
address, the group address. This 15Bit address signals on the bus which actuator(s) are being spoken
to.

The gateway uses on the EIB side only the group address, a complete and actual list of all relevant
group addresses is therefore absolutely necessary to install the system.

The ETS1 format displays group addresses by a (decimal) pair of numbers (Maingroup/Subgroup),
where Maingroup HG must be in the range 0..15, the Subgroup UG in the range 0..2047.
Example: 1/1027

With the introduction of ETS2 software, a new address format was specified, which uses a number
triple HG/MG/UG (HG: Maingroup 0..15, MG: Middlegroup 0..7, UG: Subgroup 0..255).
Example: 1/4/3

Whether group addresses are noted in ETS1 form (2 groups) or in the new ETS2 form (3
groups) plays no role — the box processes both. The difference is only in the style of writing.

The following graphic displays the structure of the Group Addresses:

Structure of group addresses

Bits
m|13|12|11|m|9|a|?|a|5|4|3|2|1|n

ETST
HG UG
H3 |HZ | H1 HD|U1D|LIEI U |U7 UG | US|U4 U3 U2ZIUTuD

ETS2

HG MG UG
H3|HZ |H1 |HO) M2 | M1 [MOJUT7 US| US| U4 U3 U2 U1 UD

Both forms can easily be converted in the other form:
The Maingroup stays the same:
HGgrst = HGgrs2

The 11 UG bits of ETS1 format divide in a 3:8 relation to MG and UG in ETS2 format:
MGETSZ = UGET31 div 256
UGETSZ = UGET31 mod 256

and
UGgrs1 = 256 * MGgrsy + UGers2

When specifying an address, the box automatically detects the format and switches its output
formatting to the last used form. Should a list in the other form be desired, the output form can be
selected by using the “ADR 2 or ,ADR 3 command (see below).

Trigger

When having to do with EIB, it can sometimes occur, that value changes of actuators are not
automatically notified over the bus. A typical example are light control actuators, which usually have
four group addresses:

1 Bit switch function, On/Off

4 Bit relative dimming

1 Byte absolute dimming (setting values)

1 Byte value report
Remember: all four group addresses belong to the same lighting circuit!

If now the dimmer is accessed by one of the first three group addresses, the brightness of the
connected lamp changes, and with that the value of the fourth group address.

This means, the 1Byte absolute dimming address does not necessarily contain the actual brightness
value, though it is used to set the brightness to absolute values.

The only way to get the actual brightness, is to ask the fourth address for its actual value, to poll the
address.

If one now always needs the actual brightness values of the lamp —i.e. to drive a bargraph on a touch
panel — every change of one of the first three groups values must start a request to the fourth address.

This can be programmed ,by hand“ by issuing a system_call ‘EIB Poll ... * upon detection of any
change. But this can cause real work: for every interesting group address, an old compare value must
be stored and this value must be compared in every main loop cycle.

This problem can be solved much more elegantly by using a trigger.

The box stores a reference for each group address, which address should be polled upon value
changes. During definition of addresses (or later) it is specified which other address (in this case: the
second 1Byte address) has to be requested for its value.

By including three ‘WHEN...POLL' statements (see below) it is asserted that always the actual
brightness value is available.

Independent of that, a value request can be started at any time by using the system_call.

Constructions like that, where several actuators influence a ,sum® whose value has to be asked for
explicitly, seem to occur often in EIB systems, for example in scene controllers.

So if you ever have to struggle with feedback that are ,stuck” or are just wrong, a well-placed poll
trigger can sometimes really help.

But please hold back with using active value requests — the EIB bandwidth is used by all connected
devices commonly.

There is no problem with polling some values from time to time, but polling all available groups every
second is wasting resources and is a sure way to get trouble.

10

Installation and startup

Gateway installation

The EIB gateway AXG-EIB is mounted on a standard rail.
The red/black clamps "Bus+" and "Bus-" are connected to the EIB.
The clamps "230V~" are connected to mains power.

EIB

Power

RS232

e
bk al _al _alEREERE

If the gateway shall have a hardware address assigned on EIB side, this can be done with the ,Prog-
Taste” button and the ETS software. On delivery, the gateway has no hardware address assigned,
and is therefore not ,visible® on the bus. In most cases, this is not necessary, but when accessing
devices, that are mounted ,behind® a line coupler, this can become necessary.

The assignment of a hardware address should always be done by an EIB installer!

Installation of the RS232 box/card

When using an AXB-232++, it gets mounted beneath (max. 30m away) the gateways (i.e. using the
rack mount kit AC-RK), and assigned a unique device ID by the DIP switches on the front panel.
When using a slot card AXC-232++, the server card’s address and the number of the used slot define
the card’s device ID.

In both cases the RS232 parameters must be set to fit those of the gateway.

The transmission from/to gateway is always done with 9600bps, 8 data bits, 1 stop bit, no parity
(9600/8/N/1), so all switches except #7 are to be ON.

11

Connection gateway-box

For this connection, a 5-wire cable has to be used, because the gateway needs hardware handshake
(RTS/CTS).

Pinout:
AXC-232++ AXB-232++
’ GND
2 I RX Hardware [{andshaking
3 TX :I RS-232
. oy RS427 Connector
5 2§ 3232 Connestor AXlink Connector
? . |Rs-a2 [/
8 TX+ J
13 g:éDjHardware is: D'4_n|e_7_ I‘a’n_EE‘q GZ”:k
1 RTS_| Handsnaking EEEZrrsalens £55¢%
12 °
el Epa)s|s|)a]s)a]s]ays)s 0000 &
15 °
18 hl
Gateway (SubD9) AXB-232++/AXC-232++ (Phoenix)
Pin 2 Rx
Pin 3 Tx
Pin4
Pin 5 GND
Pine ——
Pin 7 RTS
Pin 8 CTS

Connection box-master
The connection to the AMX master is done via Axlink wire with a maximum length of 900m.

Transferring the box program

The control program for the RS232 box comes not as Axcess source code, but as a binary file that can
be directly loaded into the box. For this transfer TOKEN is used, the command-line version of the
Axcess compiler.

All necessary files can be found in the \BOXLOAD subdirectory of the delivered diskette.

The following files can be found in the \BOXLOAD subdirectory:

TOKEN.EXE AMX token compiler

RTM.EXE run-time library for token

SYSTEM Binary file of the box program
BOXLOAD.BAT A example batch file to directly load the box
EIBLOAD.EXE A Windows program to load the box
VBRUN300.DLL run-time library for eibload.exe

For loading the program, either the Windows program EIBLOAD can be used, which allows the
comfortable selection of the used Com port, the master’s baud rate and the device ID of the box, or
TOKEN is started directly with the needed parameters (see batch file).

Function check: If the transfer was successful and the RS232 connection to the gateway is cabled

completely (RTS/CTS?), then both LEDs on the front side of the box ,, Tx* and ,Rx“ should blink
hecticly and after a few seconds stay lit permanently.

12

Tip: On some fast (!, >= 400MHz Pentium Il) PCs seem to occur sometimes problems with the
program transfer. Though the connection to the master is established, the transfer itself is aborted with
a ,Communications Error‘ message.

This means: cable and PC’s com port are OK, and the box’s device ID is correct. Please check this
first.

But if all of this is really set correctly, it could be a timing problem.

In fact there seems to be some relation between timing behavior of TOKEN and CPU’s speed — for
fast CPUs, the AMX master just reacts too slow on requests, token aborts the transfer.

The work-around sounds ridiculous, but did already work:
Copy the complete \BOXLOAD subdirectory to a diskette and start the transfer from there.
Seems to be slow enough...

Entering group addresses in the box
Every group address that shall be accessed must be ,introduced® to the box.

After having found out which group addresses and data types the different functions have, all functions
are divided into the six supported data types and then enumerated.

For each of the six types, the program can handle 255, so maximum 1530 group addresses can be
contacted.

The RS232 box/card now gets a list of all addresses, types and numbers and stores it.

All commands from the master to the box, and all messages from the box to the master are from now
on handled by just specifying type and number.

This has the advantage that the address does not have to be passed on every access, and it saves
precious memory in the master.

The transmission can either be done from main program — by using the system_call 'EIB Send
Command', or directly in the terminal mode of the box (see below).

After having entered all addresses, the box ,programs* the gateway automatically; the formerly
necessary step to load the gateway filter table with an external Windows software is no longer
necessary.

A sample program to load addresses in the box can be found in the appendix.

Supplying the box from main program

By including the delivered system_calls in the main program, control functions to EIB can be sent and
messages about value changes are sorted in the corresponding variables.

To enable the Axcess compiler to include those system_calls, they first have to be copied in a
directory on your hard drive. In which directory depends on how the compiler was installed.

On a standard installation from the AMX CD under Win95 or NT, all system_calls reside in the
subdirectory ,c:\programs\shared files\AMXShare\SYCs*.
Please copy all *.lib files from the \SYSCALL subdirectory of the delivered diskette there.

If you are using version 3.07 or higher of the Axcess compiler, please take a look at the version
display screen (F1 File\Version...). If there exists an entry ,AMXLIBS=...“, please copy all LIBs in the
directory which is specified after the =.

If there is no such entry, the compiler will search the system_calls in the actual directory only. In this
case, please copy the LIB files to the same location as your source code files.

13

Communicating with the box

System_Calls

Included in the CTEIB3 package are 16 system_calls, that can be included in your own main
programs.

To read in the most common data types (and to ease conversion of existing programs) the
system_call ‘EIB Read Standard‘ can be used. It reads in all Switch, Dim4 and 1Byte values from the
receive buffer.

To read in all six data types, the system_call ‘EIB Read All‘ is used.

For each of the six types exist a call to set an address, i.e. system_call 'EIB Set Switch', and a call to
actively request (poll) an address, i.e. system_call 'EIB Poll Switch'

The fifteenth call - system_call 'EIB Send Command' — is used to pass commands to the box, like
defining group addresses.

The system_call 'EIS5 to String' converts the data type EIS5 — a 2-Byte floating point value — in its
decimal digit representation.

You can find the following files on the diskette in the \SYSCALL subdirectory:
meaning

File name system call name

CTEIB301.LIB 'EIB Read Standard' read in Switch, Dim4 and 1Byte values

CTEIB302.LIB 'EIB Read All' read in all values
CTEIB303.LIB 'EIB Set Switch' set Switch values
CTEIB304.LIB 'EIB Set Dim4' set Dim4 values
CTEIB305.LIB 'EIB Set 1Byte' set 1Byte values
CTEIB306.LIB 'EIB Set 2Byte' set 2Byte values
CTEIB307.LIB 'EIB Set 3Byte' set 3Byte values
CTEIB308.LIB 'EIB Set 4Byte' set 4Byte values
CTEIB309.LIB 'EIB Poll Switch' poll Switch values
CTEIB310.LIB 'EIB Poll Dim4' poll Dim4 values
CTEIB311.LIB 'EIB Poll 1Byte' poll 1Byte values
CTEIB312.LIB 'EIB Poll 2Byte' poll 2Byte values
CTEIB313.LIB 'EIB Poll 3Byte' poll 3Byte values
CTEIB314.LIB 'EIB Poll 4Byte' poll 4Byte values
CTEIB315.LIB 'EIB Send Command' send commands to the box
CTEIB316.LIB 'EIS5 to String' convert 2-Byte float to string

14

Setting values
To set values on the EIB, the following six calls are used:

System_Call 'EIB Set Switch' (Dev, Val, Nr)
System_Call 'EIB Set Dim4' (Dev, Val, Nr)
System_Call 'EIB Set 1Byte' (Dev, Val, Nr)
System_Call 'EIB Set 2Byte' (Dev, Val[2], Nr)
System_Call 'EIB Set 3Byte' (Dev, Val[3], Nr)
System_Call 'EIB Set 4Byte' (Dev, Val[4], Nr)

Parameter:
Dev Device ID of the Box
Val Value to be set
Nr Number of the actuator in the box

They can be used at any place in the program (like send_string).

Feedback
To read in value changes from the box into main program, the following calls can be used:

System_Call 'EIB Read Standard' (Buffer[255], SW[255], D4[255], B1[255])

System_Call 'EIB Read All' (Buffer[255], SW[255], D4[255], B1[255], B2[255][2],
B3[255][3], B4[255][4])

Parameter:

Buffer[] Receive buffer of the RS232 box/card
SW/[] Table of actual Switch values

D4[] Table of actual Dim4 values

B1[] Table of actual 1Byte values

B2[J[2] Table of actual 2Byte values

B3/[J[3] Table of actual 3Byte values

B4[J[4] Table of actual 4Byte values

It is strongly recommended to directly use one of the receive calls in DEFINE_PROGRAM to
immediately process all waiting packets in the receive buffer.

Additionally, the two receive calls take care of text messages from the box and reroute them into
Axcess’ terminal window. So even if your application does not need feedback it is useful to include
one of them.

Active requests (Polling)
Active request can be inserted at any place in the program.

System_Call 'EIB Poll Switch' (Dev, Nr)
System_Call 'EIB Poll Dim4' (Dev, Nr)

System_Call 'EIB Poll 1Byte' (Dev, Nr)
System_Call 'EIB Poll 2Byte' (Dev, Nr)
System_Call 'EIB Poll 3Byte' (Dev, Nr)
System_Call 'EIB Poll 4Byte' (Dev, Nr)

Parameter:
Dev Device ID of the box
Nr Number of the actuator

After submitting a request, the program continues running; after receiving the value report, it is sorted
in the main program variables by the receive call.

15

Commands to the box
To pass commands to the box, the following call is used:

System_Call 'EIB Send Command' (Dev, Command[50])

Parameter:
Dev Device ID of the box
Command Character string to be interpreted by the box

All commands can be used either by the system_Call 'EIB Send Command' or directly in the terminal
mode (see below).

Data conversion

2-Byte EIB types are often used to display analog values, like temperatures. Usually, the EIS data
type EIS5 is used for that, which contains a floating point value in 16 Bit. The 16 Bit is divided like this:

1Bit Sign (S,0..1)
4 Bit Exponent (E, 0..15)
11 Bit Mantissa (M, 0..2047)

The value itself computes like -15*M*0.01*2F
= value range: +/- 670760,96
Because the AMX-AXCESS does not know float types at all, but the values often have to be displayed
anyway, (i.e. in a text button on a touch panel), the system_Call 'EIS5 to String' offers the possibility to
convert a 2-Byte EISS5 type in the according digit representation.
SYSTEM_CALL 'EIS5 to String' (Bytes[2], String[10])
Parameter:
Bytes[2] Binary value to be converted

String[10] Decimal digit string, i.e. -670760,96'

The opposite way, to convert an AMX variable (16 Bit cardinal, 0..65535) into an EIS5 type is not
supported because rounding losses can occur, and only a limited value range is available.

16

Terminal mode

During installation of the EIB gateway it is probable that some address changes happen.

But it would be just nasty to include all necessary commands in a test program every time.

On the other hand, the AXB-232++ - apart from its RS232 interface (which is already used by the
gateway)- has only the Axlink port to transmit configuration data.

But you can not randomly access the master over the Axlink connection because packets could be
mistakenly exchanged with the main program. So a possibility is missing to talk with the box
.bypassing“ the master.

Luckily enough, however, every AMX master offers such a mechanism.

In Axcess' terminal window, every keyboard command from the connected PC can be rerouted directly
to a bus device, and every output from a bus device can be rerouted to terminal window by issuing a
simple command. For this, the connection between the main program and the box gets cut
temporarily. The command for that is PASS, followed by the box‘ device ID, i.e. ,PASS 85

Since the box does not know about this it keeps sending (binary coded) values to the main program,
so you have to draw the box‘ ,attention” to not get flooded with junk strings.

For this reason, the box permanently waits for the occurrence of the word ,JUHU" in the data stream
(juhu is German for ,yoo-hoo*), and then temporarily interrupts sending feedback.

In the other way, EIB values could change during ,Smalltalk® with the box. To send these changes to
main program, the box has to know when it has direct connection to the master, and when rerouting is
active.

This step back is done automatically 40 seconds after the last command, upon the next setting of a
value or at the next value request.

To remove the rerouting (reconnect the master direct to the box), a special key sequence must be
sent to the master:

++ Esc Esc (twice Plus, twice Escape)
After that, the master prompt ">" should appear.

The general procedure looks like this:

l. Jump to terminal window (Ctrl-T)

Il. Enable the master’s echo function (enter ,ECHO ON*)
M. Reroute the box onto the terminal (PASS <Id>)

V. Draw the box* attention (JUHU)

V. Talk to the box (List, Add, etc.)
VI. Stop rerouting (+ + Esc Esc)
VII. Exit terminal window (F10)

Channels and levels

For two data types, there are additional access mechanisms:

All switch types (Switch) are mapped to the box‘ channels; when switching on, a PUSH[EIB,Nr] is
generated from the box, and a RELEASE[EIB,Nr] is generated upon switching off.

Also, switching actuators can be accessed with the ON[],OFF[], TO[] and PULSE[] keywords.

The first(!) eight(!) 1Byte addresses are also available through levels (levels 1..8 of the box); upon
change of one of these values, the actual value is passed as level to the main program, for example to
drive a bargraph display.

The opposite way, to access actuators via SEND_LEVEL is not supported.

17

Command set of the box

To not having to carry around a huge set of system_calls to initialize the box, all commands to the box
and all error and status reports from there are done in plain text format.

Messages from the box are automatically redirected to the terminal window by the receive calls, (text)
commands to the box are submitted by the system_Call 'EIB Send Command'.

Commands consist of one or more words, separated by blanks (Space, $20); capitalizing is ignored.
Only the characters {'0'..'9','A'..'Z','a'..'2'," ','/','$'} are allowed.

The following abbreviations are valid for data types:

SwW Switch
D4 Dim4
1B 1Byte
2B 2Byte
3B 3Byte
4B 4Byte

The box supports the following commands:

ADD - Enter a group address

The ADD command adds a (new) group address, thus creating a connection between EIB group
address and the type/number pair in the AMX. If group address or type/number are already used, the
old entry will be replaced.

Syntax: ADD <Type> <Nr> <Address>

Example: ADD SW 1 08/15 Switch #1 has address 08/15
ADD 4B 255 15/1234 4-Byte actuator 255 has address 15/1234
ADD SW 2 1/2/3 also ETS2 notation is possible

ADR - Select output address formatting

ADR switches the display formatting for group addresses between the old ETS1 form (HG/UG) and
the new ETS2 form (HG/MG/UG). This selection is only needed for LIST outputs; when entering new
addresses, the box automatically switches to the last form used.

Syntax: ADR <Format>
Example: ADR 2 Output in ETS1 form HH/UUUU
ADR 3 Output in ETS2 form HH/M/UUU

BOXCH - link between logic channels of 232++ and 1-Bit actuators
Short circuits occurring on the bus (AXLink) or a temporary loss of power can cause the master to
reset the channels in the 232++ box. This, in turn, turns off all 1-bit actuators.

The BOXCH command disengages the direct link between the logic channels of the 232++ box and
the 1-bit actuators, yet still allows the 1-bit actuators to be switched as before with the standard
SYSTEM_CALL ‘EIB Set Switch‘(<Parameter>).

PLEASE NOTE: This command only treats the symptoms of an improperly installed system! Finding
the source of the error is the responsibility of the system integrator or programmer.

Syntax: BOXCH <Status>

Example: BOXCH ON (default) Direct link between logic channels of 232++ and actuators
BOXCH OFF No direct link

18

BURST - Limit feedback sending speed

Normally, the box sends all pending data as fast as possible to main program. In very large main
programs it can happen that the main loop cycle can be too long until the next processing of the
receive buffer, resulting in buffer overflow.

With BURST, the sending speed of the box to main program can be limited to 10 packets/second,
leaving the master enough time to process all of the buffer content.

Disadvantage: when receiving many short packets the reaction time increases...

Syntax: BURST <State>

Example: BURST ON (default) Send as fast as possible
BURST OFF Send maximum ten packets per second

DEL — Delete a group address
With the DEL command, group addresses can be removed from memory.

Syntax: DEL <Type> <Nr>
Example: DEL SW 4 Remove switch #4
DEL 3B 123 Remove 3-Byte number 123

DELTA - Differential transmission on/off

With the DELTA command, it can be specified if the box sends a packet to the main program only if
the value of an actuator has changed, or if it sends a packet to the main program every time it
receives one from the EIB — whether the value has changed or not.

Usually, only value changes are reported in order to keep traffic as low as possible. In some special(!)
cases, it can be useful to transmit messages about every received value telegram to main program.
The RESEND logic (see below) is not influenced by this.

Syntax: DELTA <State>

Example: DELTA ON (default) Send only value changes to main program
DELTA OFF Pass all received values

LIST — Display existing definitions
LIST generates a plain text list of used group addresses and actual values per type.

Syntax: LIST <Type> <StartNr> [<EndNr>]
Example: LIST SW 1 How is switch Nr. 1 defined?
=> Qutput:
Isw1

Switch #1: 1/0/1 Val: $0

LIST D4 1 255 Show definitions of all 4Byte types
=> Qutput:

Jlist d4 1 255

Dim4 #1: 1/0/112 Val: $0 => polls 1Byte #2

Dim4 #2: 1/0/122 Val: $0 => polls 1Byte #4

19

NOPOLL - Delete a poll trigger

NOPOLL deletes all automatic value requests, triggered by an address.
Syntax: NOPOLL <Type> <Nr>

Example: NOPOLL SW 13
NOPOLL 1B 217

POLL - Active value request

The POLL command sends a telegram on the EIB bus to inquire the actual value of a group address
(whose ,reading® flag has to be set for that). This command should be used in terminal mode only; for
active requests from main program please use the appropriate system_calls.

Syntax: POLL <Type> <Nr>
Example: POLL SW 17 Request actual value of switch 17
POLL 2B 128 What value has 2Byte actuator number 1287

RESEND - Send all values again

After a RESEND command, the box sends the actual values of all known groups to the main program
to synchronize memory. This function is started automatically after exiting the terminal mode.

Syntax: RESEND

RESET - Perform a gateway reset

By performing a gateway reset, all pending packets in the gateway are discarded, the bus coupler is
initialized, and all marked group addresses are polled (see WHEN...POLL).

Syntax: RESET

SET - Write to group address

With the SET command, each address can be accessed to check its function in terminal mode.
Depending on the type, up to four (byte) values are to be specified, either as decimal or - with
preceding $ sign — as hexadecimal values.

For write access from main program, please use the appropriate system_calls.

Syntax: SET <Typ> <Nr> Value [<Val2> [<Val3> [<Val4>]]]
Example: SETSW10 Switch off switch number 1
SET D4 3 $E Set dimmer 3 to 14

SET4B 2171234 Set 4-Byte actuator number 217 to {1,2,3,4}

START - Start the update process

A START command restarts the transmission of values of the type previously stopped with the STOP
command. By default, all six types are sent.

Syntax: START <Type>
Example: START SW From now on, send switch values again
START 3B Send 3-Byte values

20

STATUS - Show status information
STATUS generates a report with the most important gateway state parameters.

Syntax: STATUS
=> Qutput:
:status
Gateway Version: 2.15
EEPROM Check: $E922
ADR mode: 3 groups (H/MM/UUU)
DELTA mode: ON (report changes)
BURST mode: ON (send full speed)
WATCH mode: OFF
BOXCH mode: ON
No errors reported.

STOP - Stop the update process

By issuing a STOP command, the transmission of value reports to main program for a special type
can be disabled, for example to study received variable’s contents without being disturbed by new
packets.

Syntax: STOP <Type>
Example: STOP SW Stop sending switch values
STOP 4B No more 4-Byte values, please

UPLOAD - Load gateway filter table

With the UPLOAD command, a refresh of the gateway’s internal filter table can be forced.
This is not normally necessary because the box automatically detects if group addresses have
changed, or a new (not yet programmed) gateway has been connected. But you never know.

Syntax: UPLOAD

WATCH - Observe a group address

With the WATCH function, the state of a group address can be monitored in order to check the
function of an actuator or sensor during installation.

Whenever a telegram of a watched address is received, the box generates a plain text message with
the old and new value.

Syntax: WATCH <Type> <Nr>
or
WATCH OFF

Example: WATCH SW 4 Watch switch number 4
WATCH 2B 23 Watch 2-Byte number 23
WATCH OFF No more watching

Output:
:watch sw 4
OK, watching SW #4
Change: SW #4: $0 => $1
Change: SW #4: $1 => $0
Change: SW #4: $0 => $1
Change: SW #4: $1 => $0
:watch off
WATCH mode set off

21

WHEN .. POLL - Defining a poll trigger

A WHEN...POLL statement can be used to automatically request (poll) an actuator when a value of
another actuator has been changed. This is helpful if write access to some addresses do influence
other groups which do not automatically report their value changes (like dimmers or scene controllers).

A special case is ,WHEN START POLL <Type> <Nr>“, If this attribute is set for a group address, the
actual value is read in automatically after a gateway reset — independent of other triggers for this
address.

Syntax: WHEN <Type> <Nr> POLL <Type> <Nr>
or
WHEN START POLL <Type> <Nr>

Example: WHEN SW 1 POLL 1B 4 Upon changes of switch #1 request value of 1Byte
actuator #4
WHEN D4 17 POLL 4B 254
WHEN START POLL SW 123 Read in switch 123 after a reset
WHEN START POLL 1B 27

22

Appendix

Comparison ,,old“ Calls — new Calls

Since the introduction of CTEIB3, names and tasks of the system_calls have changed.
To migrate existing projects to CTEIB3 without problems, it is necessary to replace the ,old*
system_calls ‘CTCT9xxx’ with the new system_calls.

The most frequent calls — setting of values and reading in the feedback — follow the same conventions
for parameter passing; in most cases it is sufficient to replace the system_call names with the
search/replace function (<Alt>-R in Axcess).

Please find in following an overview of all system_calls of the EIB software version 1.411 with their

corresponding calls in CTEIB3.

Old Calls (Version 1.411 ff.)

New Call (CTEIB3)

Gateway-Reset
'CTCT9000' (DEV)

Switch processing
'CTCT9010' (DEV,ADR[7],NR)
'CTCT9011' (DEV,VALUE,NR)
'CTCT9019' (DEV,NR)

Dim4 processing
'CTCT9020' (DEV,ADR[7],NR)
'CTCT9021' (DEV,VALUE,NR)
'CTCT9022' (DEV,DIR,STEP,NR)
'CTCT9023' (DEV,PANEL,BTN_ON,

BTN_OFF,SW_NR,D4_NR)
'CTCT9029' (DEV,NR)

1Byte processing
'CTCT9030' (DEV,ADR[7],NR)
'CTCT9031' (DEV,VALUE,NR)
'CTCT9039' (DEV,NR)

Feedback
'CTCT9100' (PUFFER[255],
SWI[255],D4[255],D8[255])

‘EIB Send Command* (DEV,'‘RESET")

‘EIB Send Command‘ (DEV, “ADD SW ‘,itoa(NR)," *, ADR[J")
‘EIB Set Switch* (DEV,VALUE, NR)
‘EIB Poll Switch’ (DEV,NR)

‘EIB Send Command‘ (DEV, “ADD D4 ,itoa(NR)," *, ADR[J")
‘EIB Set Dim4‘ (DEV, VALUE, NR)

‘EIB Poll Dim4‘ (DEV, NR)

‘EIB Send Command‘ (DEV, “ADD 1B *,itoa(NR)," -, ADR[J")
‘EIB Set 1Byte* (DEV,VALUE, NR)
‘EIB Poll 1Byte’ (DEV,NR)

‘EIB Read Standard' (PUFFER[255],
SW[255],D4[255],D8[255])

Please take special notice of the 4Bit dim actuators (Dim4), which can only be set directly to a value;
the old calls CTCT9021..CTCT9023 are therefore all mapped to the new call ‘EIB Set Dim4“.

To enter the group addresses (CTCT90x0), local calls can be used to translate the parameters,
instead of using the ugly statement above. Examples can be found as block files on the diskette and

below.

23

Values for Dim4 actuators

The call ‘EIB Set Dim4‘ passes the specified values directly to the actuator — the values sent back now
really equal the actual values (in the range 0..15), that were sent.

The meaning of the 16 possible values are hereby defined in the EIB data type EIS2:
Bits 0..2 define the dimming speed (0: Stop, 7: Max)
Bit 3 defines the dimming direction (0: down, 1: up)

This results in the following table:

0 |Stop 8 Stop

1 | Slowly darker 9 Slowly brighter
2 .. 10 ($A) | ...

3 .. 11($B) |...

4 |darker 12 ($C) | brighter

5 |... 13($D) | ...

6 |.. 14 ($E) | ...

7 | Fast darker 15 ($F) | Fast brighter

24

Example: Entering the groups

The following example program shows the transmission of group definitions to the box.

In a loop, every 200ms a command is set to the box via system_call 'EIB Send Command', to either
connect a group address with a type/number pair, or to define an automatic value request (poll trigger).
It is sufficient to do this loading once during system installation, because the box stores all data in its
local memory. The box has to be brought to the latest state only after changes in the configuration.

For this purpose a small independent loader program that is temporarily loaded into the master is just
more handy. We strongly advise against integrating the initialization in the DEFINE_START portion
ofthe main program. SYSTEM_CALLS are already working in the mainline while the program is still
trying to add address groups in the Gateway.

PROGRAM NAME=' E - boxl|l oad denp to enter the addresses'
(* DATE: 01/ 11/ 00 TI ME: 11: 44: 53 *)
DEFI NE_DEVI CE

EIB = 17 (* Device | D AXB-232++ /| AXC-232++ *)

DEFI NE_VARI ABLE
X (* Counter *)
Cmd[50] (* Actual Command *)

DEFI NE_START
X=0 (* Stop on reset *)
VWAIT 20 (* wait 2 seconds *)
X=1 (* enter first group *)

DEFI NE_PROGRAM

VWAIT 2 (* check every 200ns *)
I F(X) (* something to enter ? *)

{

SELECT
{
ACTIVE(X = 1): Cnd = "ADD SW1 1/1' (* Switch 1: address 1/1 *)
ACTIVE(X = 2): Cnd = 'ADD SW2 1/2'
ACTIVE(X = 3): OCnd = 'ADD SW3 1/0/3

(* Switch 3: address equals 1/3 in ETS1 notation *)

ACTIVE(X = 4): Cnd = 'ADD SW4 1/22' (* On/ O f di nmer *)
ACTIVE(X = 5): Cnd = "ADD D4 1 1/23" (* Dinming relative *)
ACTIVE(X = 6): Cnd = "ADD 1B 1 1/24' (* D nming absolute *)
ACTIVE(X = 7): Crd = "ADD 1B 2 1/25" (* Actusl dinmer val ue *)
ACTIVE(X = 8): Crd = "WHEN START POLL 1B 2' (* read after reset... *)
ACTIVE(X = 9): Cnd = "WHEN SW4 POLL 1B 2' (* ...when switches... *)
ACTIVE(X = 10): Cnd = "WHEN D4 1 POLL 1B 2' (* ...when dinmng... *)
ACTIVE(X = 11): Cnd = "WHEN 1B 1 POLL 1B 2' (* ...and when set *)
ACTIVE(1): Crd = "" (* The End *)
}

IF(Cd <> "") (* something to send ? *)

{
SYSTEM CALL ' EI B Send Command' (EIB,Crd) (* send to box *)

X=X+1 (* next one *)
}

ELSE (* end reached *)
X=0 (* disable counter *)

}

Example: Main program

PROGRAM NAME=' E - Denmo main program for ElIB access'
(* DATE: 01/ 11/ 00 TI ME: 11: 39: 59 *)

25

DEFI NE_DEVI CE
El B 17 (* Device |ID of AXB-232++/ AXC-232++ *)
TP 128 (* Any control device, i.e. AXT-EL+ *)

DEFI NE_CONSTANT

Sw_Light1 =1 (* Switch nunber light 1 *)
Sw_Li ght2 =2 (* Switch nunber light 2 *)
Sw_Li ght3 =3 (* Switch nunber light 3 *)
Sw_Di rmer =4 (* Switch dimer on/off *)
D4_Di mrer =1 (* Dnming relative *)
Bl _Di m Set =1 (* Dinming absolute *)

DEFI NE_CONNECT_LEVEL

(EIB, 2, TP, 1) (* Display brightness on bargraph #1 *)
DEFI NE_VARI ABLE

El B_Buf f er[255] (* Receive buffer of the box *)

| NTEGER El B_Swi t ch[255] (* Actual Switch val ues *)

| NTEGER EI B_Di m4[255] (* Actual Dimd val ues *)

| NTEGER El B_1Byt e[255] (* Actual 1Byte val ues *)

DEFI NE_START
CREATE_BUFFER EI B, EI B Buffer (* Connect receive buffer *)

DEFI NE_PROGRAM
(* Read in feedbacks *)
SYSTEM CALL 'EI B Read Standard' (EIB_Buffer,EIB Switch, EIB Dim4, El B 1Byte)

(* Switch Iightl, one button each for 'On' and 'O f' *)
PUSH TP, 1] (* Lightl on *)
SYSTEM CALL 'EIB Set Switch' (EIB, 1, Sw Lightl)

PUSH TP, 2] (* Lightl off *)
SYSTEM CALL 'EIB Set Switch' (EIB,0, Sw_Light1)

[TP, 1]
[TP, 2]

[El B, Sw_Li ght 1] (* Feedback 'on' *)
not [ElIB, Sw Lightl] (* Feedback 'off' *)

(* Switch Iight2, one button toggles between 'on' and 'off' *)
PUSH TP, 3] (* Light2 on/off *)

SYSTEM CALL 'EIB Set Switch' (ElIB, not [ElB, Sw_Light2], Sw_Light?2)
[TP, 3] = [EIB, Sw_Light 2] (* Feedback 'on' *)

(* Switch light3, button switches on for 10 seconds *)
PUSH TP, 4] (* Light3 on for 10 secs *)

{
CANCEL_WAI T ' Li ght 3'
SYSTEM CALL 'EIB Set Switch' (EIB, 1, Sw_Light3)

WAI T 100 ' Light3'
SYSTEM CALL 'EIB Set Switch' (EIB, 0, Sw_Li ght3)
}

[TP, 4] = [EIB, Sw_Li ght 3] (* Feedback 'on' *)

26

(* Dinmrer control *)
PUSH TP, 5] (* Di nmer off *)
SYSTEM CALL 'EIB Set Switch

PUSH] TP, 6] (*
SYSTEM _CALL

Dinmer to 25%*
"EIB Set 1Byte'

PUSH TP, 7] (*
SYSTEM CALL

D mer to 50% *
"EIB Set 1Byte'

PUSH] TP, 8] (*
SYSTEM _CALL

Dinmer to 75% *
"EIB Set 1Byte'

PUSH TP, 9] (* Dinmer to 100%

SYSTEM CALL 'EIB Set Switch
[TP,5] = (EIB_1Byte[Bl_Di m Va
[TP,6] = (EIB_1Byte[Bl_Di m Va
[TP,7] = (EIB_1Byte[Bl_Di m Va
[TP,8] = (EIB_1Byte[Bl_Di m Va
[TP,9] = (EIB_1Byte[Bl_Di m Va

PUSH TP, 10] (* Brighter *)
SYSTEM CALL 'EIB Set Di m#'

PUSH[TP, 11] (* Darker *)
SYSTEM CALL 'EI B Set Di m#'

" (EI'B, 0, Sw_Di mer)

)
(EI B, 64, B1_Di m Set)

)
(EI B, 128, B1_Di m Set)

)
(EI B, 192, B1_Di m Set)

*)
" (EI'B, 1, Sw_Di mer)

Feedback
Feedback
Feedback
Feedback
Feedback

0% *)
25% *)
50% *)
75% *)
100% *)

1]
1]
1]
]
1]

(El B, 10, D4_Di nmer)

(El B, 2, D4_Di mer)

RELEASE[TP, 10] (* Bright enough *)

RELEASE[TP, 11] (* Dark enough
SYSTEM CALL ' EI B Set Di nd'

[TP, 10]
[TP, 11]

((BIB_
((EIB

Di mA[D4_Di mrer] >=
 Dimd[D4_Di mmer] >=

*)
(El B, 0, D4_Di mer)

9) and (EIB D
1) and (EIB_Di

27

15))
)

Local calls to replace ,,old“ initialization

In many existing programs, all group addresses are sent to the box on every system restart, usually
done by the system_calls CTCT9010, CTCT9020 and CTCT9030.

They each enter one group address for a Switch, Dim4 or 1Byte actuator, doing in principle the same as
an ,ADD*“ command (in terminal mode or via ,EIB Send Command®).

For example, a
SYSTEM_CALL ‘CTCT9010° (EIB, ‘0/815°, 1)
would change to
SYSTEM_CALL ‘EIB Send Command’ (EIB, ‘ADD SW 1 0/815°)

It came up that the amount of work for this conversion is relative high, because the necessary
parameters differ strongly. When having just a few groups, this is no serious problem, but when moving
the definitions of several hundreds of group addresses to the new calls, the search/replace function of
the Axcess compiler (<Alt>-R) does not help too much.

To minimize this effort, it is easier to include some DEFINE_CALLs in the main program with the names
CTCT9010..CTCT9030 that convert the ,old“ parameters:

DEFI NE_CALL ' CTCT9010' (DEVI CE, ADDRESS[7] , COUNTER)
| F(DEVI CE AND (DEVI CE <= $FF)) (* Device OK ? *)
| F(COUNTER AND (COUNTER <= $FF)) (* Counter OK ? *)
SYSTEM CALL ' EI B Send Conmand’
(DEVI CE, "' ADD SW', | TOA(COUNTER), ' ', ADDRESS")

DEFI NE_CALL ' CTCT9020' (DEVI CE, ADDRESS[7] , COUNTER)
| F(DEVI CE AND (DEVI CE <= $FF)) (* Device OK ? *)
| F(COUNTER AND (COUNTER <= $FF)) (* Counter OK ? *)
SYSTEM CALL ' EI B Send Conmand’
(DEVI CE, "' ADD D4 ', | TOA(COUNTER),' ', ADDRESS")

DEFI NE_CALL ' CTCT9030' (DEVI CE, ADDRESS[7] , COUNTER)
| F(DEVI CE AND (DEVI CE <= $FF)) (* Device OK ? *)
| F(COUNTER AND (COUNTER <= $FF)) (* Counter OK ? *)
SYSTEM CALL ' EI B Send Conmand’
(DEVI CE, "' ADD 1B ', | TOA(COUNTER),' ', ADDRESS")

Then the only change is to remove the ,system_*“ out of the keyword ,system_call*, like:
CALL ‘CTCT9010° (EIB, ‘0/815, 1)

28

FAQ’s

Question:

After having loaded the software in the box and having connected it, The Tx LED flashes, but the Rx
LED stays dark.

Answer:

The RS232 parameters are probably incorrect. Set the DIP switches on the box/card to 9600bps, 8 data
bits, 1 stop bit, no parity => all switches on, except number 7.

Question:

Neither Rx nor Tx are on — the software is in the box, and | even have connected the hardware
handshake wires. But nothing happens on my AXB-232++.

Answer:

Caution! The leftmost Phoenix connector pin of the AXB-232++ is not used. Maybe the handshakes
(RTS and CTS) are off one pin to the left...

Question:

Dimming of a lighting circuit works properly, but | do not get any feedback from EIB about it.
Answer:

Perhaps it is an actuator that has a special group address to read out its value (ref. , Trigger®).
Basically, it can be necessary for any EIB address to explicitly ask it for its actual value — not every
sensor/actuator automatically generates a telegram upon value changes.

Question:

When resetting the gateway, several functions are started without the AMX trying to do so.
Answer:

This is probably caused by a value request (poll) of an address that defines a scene.
Whenever a scene controller sends its actual state (,scene 27 active®) on the bus, all actuators
participating in the scene interpret this telegram as a command to activate this scene...
Work-around: do not poll scene controllers.

Question:
The 1-bit actuators suddenly turn off after | plug in my touch panel

Answer:

Power has been lost either because the wrong cable is being used, or the installation was improperly
carried out. The logic channels in the box have been turned off, and the link between the channels and
the 1-bit actuators turns the actuators off. Check the wiring used and the installation details for
permanent remedy, and use the BOXCH commands for a temporary fix.

29

Error messages

In some situations the box generates messages that are displayed in the terminal window by the
receiver calls (EIB Read...). They are preceded with the string ,EIB:“, and contain plain text messages
which are listed alphabetically below:

 "Address <Address> not used" The gateway has reported the value change of an unused
address

« "BA Busy: No connection to EIB" The gateway has no connection to EIB

< "BA Error: Internal Error" Internal error of the gateway’s bus coupler

* "BA-Layer: EIB problem" Problems accessing EIB

« "Bad ADD address: <Address>" The address parameter in an ADD is invalid

« "Bad ADD number: <Nr>" The number parameter in an ADD is invalid (0O or >255)

« "Bad ADD parm count" The ADD command is incomplete or has too many arguments

+ "Bad ADD type: <Type>" The type argument in an ADD is invalid (SW, D4, 1B, 2B, 3B, 4B)

« "Bad ADR parm count" The ADR command has none or more than one argument

« "Bad DEL number: <Nr>" The number parameter in a DEL is invalid (0 or >255)

« "Bad DEL parm count" The DEL command is incomplete or has too many arguments

* "Bad DEL type: <Type>" The type argument in a DEL is invalid (SW, D4, 1B, 2B, 3B, 4B)

¢« "Bad HELP parm count” The HELP command has more than one argument

e "Bad LIST parm count” The LIST command has the wrong count of parameters

* "Bad LIST start <Nr>" Invalid start number in a LIST (0 or >255)

* "Bad LIST type: <Type>" The type argument in LIST is invalid (SW, D4, 1B, 2B, 3B, 4B)

« "Bad NOPOLL parm count” Wrong parameter count in NOPOLL

e "Bad POLL number: <Nr>" Invalid number argument in POLL (0 or >255)

« "Bad POLL parm count" Wrong parameter count in POLL

« "Bad POLL trigger - <Type> <Nr> unused" The specified trigger in WHEN...POLL is unused

« "Bad POLL type: <Type>" Invalid type parameter in POLL (SW, D4, 1B, 2B, 3B, 4B)

+ "Bad Poll <Type> #<Nr> unused" The specified target is unused

* "Bad SET - <Type> <Nr> unused" The specified SET target is unused

« "Bad SET <Type> -illegal value" The specified values are not allowed for this type to SET

« "Bad SET <Type> - wrong parm len" SET value length does not fit the referenced type

* "Bad SET number <Nr>" Invalid number argument in SET (0 or >255)

« "Bad SET parm count" Wrong parameter count in SET

« "Bad SET type <Type>" Invalid type parameter in SET (SW, D4, 1B, 2B, 3B, 4B)

« "Bad WHEN - POLL expected"

* "Bad WHEN - START expected" Invalid syntax of WHEN...POLL command

« "Bad WHEN dest number: <Nr>"

« "Bad WHEN number: <Nr>" Invalid number parameter in WHEN...POLL (0 or >255)

« "Bad WHEN dest type: <Type>"
"Bad WHEN type: <Type>" Invalid type parameter in WHEN...POLL (SW, D4, 1B, 2B, 3B, 4B)

« "Bad WHEN parm count’' Wrong parameter count in WHEN...POLL

e "CRC: Gateway EEPROM CRC-Error" Internal checksum error of the gateway

« "Gateway Timeout" The gateway has not answered for two seconds (cabling?)

*« "NAK: No EIB Device at <Address>" No reaction to this group address on EIB

e "Poll queue overflow" The box has more poll requests than the gateway can handle

« "Send buffer overflow" The box‘ sending queue is full

« "Term Timeout" In terminal mode, no command has been entered for 40 seconds

« "Term overflow... Bye" The actual (terminal) command is longer than 80 characters

« "Tx: Transmit buffer overflow" The gateway’s sending queue is full

¢ "Unknown: <Cmd>" The box does not know the specified command

30

	Revision 3.01
	Table of contents
	TABLE OF CONTENTS	2
	What is it for?
	Role of the EIB installer
	EIB from the AMX programmer’s point of view
	EIB details when using the Gateway

	Foreword to Audit 3.01
	System description
	Hardware components
	Software components
	Groups, addresses and formats
	Trigger

	Installation and startup
	Gateway installation
	Installation of the RS232 box/card
	Connection gateway-box
	
	Gateway (SubD9)	AXB-232++/AXC-232++ (Phoenix)

	Connection box-master
	Transferring the box program
	Entering group addresses in the box
	Supplying the box from main program

	Communicating with the box
	System_Calls
	Setting values
	Feedback
	Active requests (Polling)
	Commands to the box
	Data conversion

	Terminal mode
	Channels and levels

	Command set of the box
	ADD – Enter a group address
	ADR – Select output address formatting
	
	
	
	
	
	BOXCH – link between logic channels of 232++ and 1-Bit actuators

	Short circuits occurring on the bus (AXLink) or a temporary loss of power can cause the master to reset the channels in the 232++ box. This, in turn, turns off all 1-bit actuators.
	The BOXCH command disengages the direct link between the logic channels of the 232++ box and the 1-bit actuators, yet still allows the 1-bit actuators to be switched as before with the standard SYSTEM_CALL ‘EIB Set Switch‘(<Parameter>).
	PLEASE NOTE: This command only treats the symptoms of an improperly installed system! Finding the source of the error is the responsibility of the system integrator or programmer.

	BURST – Limit feedback sending speed
	DEL – Delete a group address
	DELTA – Differential transmission on/off
	LIST – Display existing definitions
	NOPOLL – Delete a poll trigger
	POLL - Active value request
	RESEND – Send all values again
	RESET – Perform a gateway reset
	SET – Write to group address
	START – Start the update process
	STATUS – Show status information
	STOP – Stop the update process
	UPLOAD – Load gateway filter table
	WATCH – Observe a group address
	WHEN .. POLL – Defining a poll trigger

	Appendix
	Comparison „old“ Calls – new Calls
	Values for Dim4 actuators
	Example: Entering the groups
	Example: Main program
	Local calls to replace „old“ initialization
	FAQ’s
	Error messages

